当前位置:首页 > 师资状况 > 教授/研究员

姓名: 陈胜

出生年月:1977年8月

职称:教授

硕/博士生导师:博导

邮箱:isdongyue@163.com

研究方向:1.传热传质模拟2.低碳能源3.反应多相流动模拟、燃烧与排放

 

教育背景:

2005年 华中科技大学博士(硕博连读)

2000年华中科技大学学士

 

工作经历:

2019年 -武汉理工大学     授,博士生导

2016年-2019年  诺丁汉大学   讲师

2012年-2013年   伦敦城市学院  牛顿学者

2009年-2016年 华中科技大学  副教授

2008年-2009年 布伦瑞克理工  洪堡学者

 

项目情况:

主持国家自然科学基金项目两项

主持教育部博士点基金一项

参与项目若

 

 

代表性学术成果

发表SCI论文90余篇,H指数25。论文节选如

1) Clean Energies and Technologies for Power Systems

[1] Chen, S*., Liu, H., Zheng, C.G. (2017): Methane combustion in MILD oxyfuel regime: Influences of dilution atmosphere in co-flow configuration. Energy 121, 159

[2] Liu, J., Liu, Z., Chen, S., et al.. (2017):  A numerical investigation on flame stability of oxy-coal combustion: Effects of blockage ratio, swirl number, recycle ratio and partial pressure ratio of oxygen. International Journal of Greenhouse Gas Control  57, 63 

[3] Liu, Y., Chen, S*., Liu, S., et al. (2016): Methane combustion in various regimes: First and second thermodynamic-law comparison between air-firing and oxyfuel condition. Energy 115, 26

[4] Tu,Y., Su, K., Liu, H., Chen, S., et al. (2016):  Physical and Chemical Effects of CO2 Addition on CH4/H2 Flames on a Jet in Hot Coflow (JHC) Burner. Energy Fuels   30,  1390

[5] Liu, Y., Chen, S*., Yang, B., et al. (2015): First and second thermodynamic-law comparison of biogas MILD oxy-fuel combustion moderated by CO2 or H2O.  Energy Conversion and Management  106, 625

[6] Tu,Y., Liu, H., Chen, S.,  et al. (2015): Effects of furnace chamber shape on the MILD combustion of natural gas. Appl. Therm. Eng. 76, 64

[7] Tu,Y., Liu, H., Su, K., Chen, S.,  et al. (2015): Numerical study of H2O addition effects on pulverized coal oxy-MILD combustion.  Fuel Processing Technology,  138, 252-262

[8] Tu,Y., Liu, H., Chen, S.,  Liu, Z., and Zheng, C.G. (2015): Numerical study of combustion characteristics for pulverized coal under oxy-MILD operation. Fuel Process. Technol. 135, 80  

[9] Wang, L., Liu, Z., Chen, S.,  Zheng, C.G. and Li, J. (2013): Physical and Chemical Effects of CO2 and H2O Additives on Counterflow Diffusion Flame Burning Methane. Energy Fuels 27, 7602

[10] Chen, S*., Mi, J., Liu, H. and Zheng, C.G. (2012): First and second law analysis of hydrogen-air counter-flow diffusion combustion in various combustion modes. Int. J. Hydrog. Energy 37, 5234

[11] Liu, J., Chen, S., Liu, Z., Peng, K., Zhou, N., Huang, X., Zhang, T. and Zheng, C.G. (2012): Mathematical Modeling of Air- and Oxy-Coal Confined Swirling Flames on Two Extended Eddy-Dissipation Models. Ind. Eng. Chem. Res.  51, 691

[12] Wang, L., Liu, Z., Chen, S. and Zheng, C.G. (2012): Comparison of different global combustion mechanisms for use in CFD modeling under hot and diluted oxidation condition. Combust. Sci. Technol.  184, 259

[13] Chen, S*. and Zheng, C.G. (2011): Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition. Int. J. Hydrog. Energy 36, 15403

[14] Li, P., Mi, J., Dally, B.B., Wang, F., Wang, L., Liu, Z., Chen, S. and Zheng, C.G. (2011): Progress and recent trend in MILD combustion. Sci. China Ser. E-Technol. Sci. 54, 255

[15] Chen, S*. (2010): Analysis of entropy generation in counter-flow premixed hydrogen-air combustion. Int. J. Hydrog. Energy 35, 1401

[16] Chen, S*. Li, J., Han, H.F., Liu, Z.H. and Zheng, C.G. (2010): Effects of hydrogen addition on entropy generation in ultra-lean counter-flow methane-air premixed combustion. Int. J. Hydrog. Energy 35, 3891

[17] Chen, S*., Han, H.F., Liu, Z.H., Li, J. and Zheng, C.G. (2010): Analysis of entropy generation in non-premixed hydrogen versus heated air counterflow combustion, Int. J. Hydrog. Energy 35, 4736

[18] Chen, S*., Liu, Z., Liu, J., Li, J., Wang, L. and Zheng, C.G. (2010): Analysis of entropy generation in hydrogen-enriched ultra-lean counter-flow methane–air non-premixed combustion. Int. J. Hydrog. Energy 35, 12491

[19] Chen, S*., Liu, Z., Zhang, C., He, Z., Tian, Z., Shi, B. and Zheng, C.G. (2006): A simple lattice Boltzmann scheme for low Mach number reactive flows.  Sci. China Ser. E-Technol. Sci. 49, 714

[20] Chen, S*., Liu, Z., He, Z., Zhang, C., Tian, Z., Shi, B. and Zheng, C.G. (2006): A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry. Chin. Phys. Lett. 23, 656

[21] Zhang C., Chen, S., Zheng, C.G. and Lou, X. (2007): Thermoeconomic diagnosis of a coal fired power plant. Energy Conv. Manag. 48, 405

 

2) Multiphase flow

[22] Yang, B., Chen, S*. (2018): Simulation of interaction between a freely moving solid particle and a freely moving liquid droplet by lattice Boltzmann method. Int. J. Heat Mass Transf. 127, 474

[23] Gong, W. Yan, Y.  Chen, S. Wright, E. (2018): A modified phase change pseudopotential lattice Boltzmann model.  Int. J. Heat Mass Transf. 125, 323

[24] Gong, W. Yan, Y. Y.  Chen, S. (2018):  A study on the unphysical mass transfer of SCMP pseudopotential LBM. Int. J. Heat Mass Transf., 123, 815 

[25] Yang, B., Chen, S*., Kai Liu. (2017):   Direct numerical simulations of particle sedimentation with heat transfer using the Lattice Boltzmann method. Int. J. Heat Mass Transf.  104, 419

[26] Yang, B., Chen, S*., Xiong, Y., et al. (2017):  Size and thermal effects on sedimentation behaviors of two spheres. Int. J. Heat Mass Transf., 114, 198

[27] Gong, W., Zu, Y., Chen, S., Yan, Y. Y. (2017):   Wetting Transition Energy Curves for a Droplet on a Square-Post Patterned Surface. Science Bulletin  62, 136

[28] Gong, W. Yan, Y. Y.  Chen, S, et al. (2017):   Numerical Study of Wetting Transitions on Biomimetic Surfaces Using a Lattice Boltzmann Approach with Large Density Ratio.  J. Bionic Eng.  14, 486 

[29] Gong, W., Chen, S., Yan, Y. Y.  (2017):  A Thermal Immiscible Multiphase Flow Simulation by Lattice Boltzmann Method. Int. Comm. Heat Mass Transf. 88, 136

[30] Yang, B., Chen, S*., Cao, C., et al. (2016):  Lattice Boltzmann simulation of two cold particles settling in Newtonian fluid with thermal convection. Int. J. Heat Mass Transf., 93, 477

[31] Cao, C., Chen, S., Li, J. Liu, Z., Zha, L., Bao, S., and Zheng C.G. (2015): Simulating the interactions of two freely settling spherical particles in Newtonian fluid using lattice-Boltzmann method. Appl. Math. Comput.  250, 533

[32] Bao, S., Chen, S.*, Liu, Z., Li, J., Wang, H. and Zheng C.G. (2012): Simulation of the flow around an upstream transversely oscillating cylinder and a stationary cylinder in tandem. Phys. Fluids 24, 023603

[33] Bao, S., Chen, S., Liu, Z. and Zheng C.G. (2012): Lattice Boltzmann simulation of the convective heat transfer from a stream-wise oscillating circular cylinder. Int. J. Heat Fluid Flow 37,147

[34] Chen, S., Liu, Z., Shi, B. and Zheng, C.G. (2006): Computation of gas-solid flows by finite difference Boltzmann equation. Appl. Math. Comput. 173, 33

[35] Chen, S., Liu, Z., Shi, B., He, Z. and Zheng, C.G. (2005): A novel incompressible finite-difference Lattice Boltzmann equation for particle-laden flow. Acta Mech. Sin. 21, 574

[36] Chen, S., Liu, Z., Shi, B. and Zheng, C.G. (2005): External Body Force in Finite Difference Lattice Boltzmann Method.  J. Hydrodynamics 17, 473

[37] Chen, S., Shi, B., Liu, Z., He, Z., Guo, Z.L. and Zheng, C.G. (2004): Lattice-Boltzmann simulation of particle-laden flow over a backward-facing step. Chin. Phys. 13,1657

 

 

招生专业

机械工程(含车辆工程,汽车电子工程,汽车运用工程)

动力工程及工程热物理

车辆工程

 

 

研究生招生

本课题组主要进行能源相关领域的科学理论及工程应用研究,具有先进的实验及数值计算平台,并与国内外知名高校建立了良好的科研合作关系。邀请有科研兴趣,学术志向,相关专业基础较好的同学报考博士或硕士研究生。通过系统的科研培训和专业学习,本课题组力争为毕业生创造良好的学术条件及出国深造的机会。同时也热忱欢迎相关专业毕业生跨专业报考!

联系方式:isdongyue@163.com,欢迎各位专家,学者,同学来本课题组参观指导。

  

汽车学院微平台

更多

下载中心